Rabu, 02 Mei 2012

Nanotechnology That May Enhance Medication Delivery And Improve MRI Performance

Nanotechnology That May Enhance Medication Delivery And Improve MRI Performance

Main Category: Neurology / Neuroscience
Also Included In: MRI / PET / Ultrasound
Article Date: 02 May 2012 - 6:00 PDT

email icon email to a friend   printer icon printer friendly   write icon opinions   <!-- rate icon rate article



Patient / Public:not yet rated

Healthcare Prof:not yet rated


Researchers at Harvard-affiliated McLean Hospital have shown a new category of "green" nanoparticles comprised of a non-toxic, protein-based nanotechnology that can non-invasively cross the blood brain barrier and is capable of transporting various types of drugs.

In an article published online in PLoS ONE, Gordana Vitaliano, MD, director of the Brain Imaging NaNoTechnology Group at the McLean Hospital Imaging Center, reported that clathrin protein, a ubiquitous protein found in human, animal, plant, bacteria and fungi cells, has been modified for use as a nanoparticle for in-vivo studies. "Clathrin has never been modified for use in vivo and offers many new and interesting possibilities for delivering drugs and medical imaging agents into the brain", said Vitaliano.

Clathrin is the body's primary delivery vehicle responsible for delivering many different types of molecules into cells. Vitaliano therefore believed that the protein's naturally potent transport capabilities might be put to practical medical use for drug delivery and medical imaging.

"This study provides a new insight into utilizing bioengineered clathrin protein as a novel nanoplatform that passes the blood brain barrier," said Vitaliano, who successfully attached different fluorescent labels, commonly used in imaging, to functionalize clathrin nanoparticles. "We were able to show that the clathrin nanoparticles could be non-invasively delivered to the central nervous system (CNS) in animals. The clathrin performed significantly."

Of major importance for future clinical applications, Vitaliano also showed that clathrin crossed and/or bypassed the blood-brain barrier without enhancers or modifications, unlike other nanoparticles. These findings open the door to exploring new and important CNS medical applications.

One important medical application for clathrin nanoparticles would be Magnetic Resonance Imaging (MRI). Gadolinium contrast agents are often used to improve MRI performance. In one configuration, Vitaliano found that functionalized clathrin nanoparticles performed 8,000 times better than an FDA approved MRI contrast agent (gadopentetate dimeglumine).

"Stated another way, it means 8,000 times less gadolinium might be required for achieving good MRI results. Because very low gadolinium concentrations would be required for MRI, it could significantly decrease gadolinium toxicity, which is an important issue," explained Vitaliano. "Clathrin transported gadolinium is therefore among the most potent, biocompatible contrast agents available."

These results in two different applications showed that clathrin offers substantial functionalization and transport flexibility. Purified clathrin nanoparticles could therefore serve as an appealing alternative to other medical nanoplatforms such as dendrimers, nanogels, solid lipid nanospheres, liposomes, and the like.

Given the critical need for new types of CNS drug transport capabilities, Vitaliano said her work would likely be of interest to researchers involved in neuroimaging and neuroscience, but also to radiologists, bioengineers, chemists, physicists, material scientists, biomedical researchers, and other researchers active at the frontiers of imaging and drug delivery.

Looking ahead, Vitaliano noted that her findings may also facilitate other studies for examining signaling pathways in different diseases that rely in whole or in part on clathrin transport, and thus may have a substantial impact in multiple fields.

Please use one of the following formats to cite this article in your essay, paper or report:

MLA


APA

Please note: If no author information is provided, the source is cited instead.



Add Your Opinion On This Article

'Nanotechnology That May Enhance Medication Delivery And Improve MRI Performance'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



MediLexicon International Ltd Logo

Privacy Policy | Terms and Conditions

MediLexicon International Ltd
Bexhill-on-Sea, United Kingdom
MediLexicon International Ltd © 2004-2012 All rights reserved.

Everyday Health Network

Tidak ada komentar:

Posting Komentar