Rabu, 06 Juni 2012

Novel Way To Treat Drug-Resistant Brain Tumor Cells

Novel Way To Treat Drug-Resistant Brain Tumor Cells

Main Category: Cancer / Oncology
Also Included In: Neurology / Neuroscience
Article Date: 06 Jun 2012 - 1:00 PDT

email icon email to a friend   printer icon printer friendly   write icon opinions   <!-- rate icon rate article
Patient / Public:not yet rated

Healthcare Prof:not yet rated


New research from the University of Wisconsin-Madison explains why the incurable brain cancer, glioblastoma multiforme (GBM), is highly resistant to current chemotherapies.

The study, from the brain-tumor research lab of Dr. John Kuo, assistant professor of neurological surgery and human oncology at UW School of Medicine and Public Health, also reports success for a combination therapy that knocks out signaling of multiple members of the epidermal growth factor receptor (EGFR) family in brain-cancer cells.

The late U.S. Sen. Edward M. Kennedy died of GBM in 2009. People diagnosed with GBM live on average for only 15 months after diagnosis, even after undergoing aggressive surgery, radiation and chemotherapy. Earlier research from Dr. Kuo and other scientists showed that GBM cancer stem cells escape current treatments and proliferate rapidly to cause tumor recurrence.

Several years ago, research suggested that a drug engineered to target EGFR signaling might work against GBM because many brain cancers carried EGFR mutations. Excessive and abnormal EGFR signaling spurs the growth of cancer cells. Although cetuximab, a monoclonal-antibody drug, was successful in clinical trials for patients with lung, colorectal, and head and neck cancers, it failed against GBM.

Research by Dr. Paul Clark, a scientist in Kuo's lab and the study's lead author, shows why. When cetuximab treatment switches off EGFR activity and should inhibit cancer-cell growth, cancer stem cells compensate by turning on two other EGFR family receptors (ERBB2 and ERBB3) and continue to grow. One of these receptors, ERBB2, is implicated in certain types of chemotherapy-resistant breast cancer. Fortunately, another novel drug already approved by the FDA, lapatinib, inhibits ERBB2 activity and signaling by multiple EGFR members.

This study shows that cancer stem-cell growth was markedly inhibited by lapatinib treatment, which results in combined knockout of multiple EGFR family members.

"This is good news, because these drugs target an important mechanism for the (GBM) cancer cells to grow so quickly and evade current therapies, and these molecularly targeted drugs are also well-tolerated by patients and have minimal side effects," Dr. Clark said.

Kuo, director of the Comprehensive Brain Tumor Program at UW Health and chair of the Carbone Cancer Center brain tumor group, said that results of several brain cancer clinical trials with these novel drugs and other new strategies are pending or underway.

Please use one of the following formats to cite this article in your essay, paper or report:

MLA


APA

Please note: If no author information is provided, the source is cited instead.



Add Your Opinion On This Article

'Novel Way To Treat Drug-Resistant Brain Tumor Cells'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



MediLexicon International Ltd Logo

Privacy Policy | Terms and Conditions

MediLexicon International Ltd
Bexhill-on-Sea, United Kingdom
MediLexicon International Ltd © 2004-2012 All rights reserved.
MNT (logo) is the registered EU trade mark of MediLexicon Int. Limited.

Everyday Health Network back to top | home | privacy policy

MediLexicon International Ltd Logo MediLexicon International Ltd
Bexhill-on-Sea, United Kingdom
MediLexicon International Ltd © 2004-2012 All rights reserved.
MNT (logo) is the registered EU trade mark of MediLexicon Int. Limited.

Tidak ada komentar:

Posting Komentar